LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Waste Silicone Rubber in Three-Dimensional Conductive Networks as a Temperature and Movement Sensor.

Photo from wikipedia

Constructing a three-dimensional (3D) conductive network in a polymer matrix is a common method for preparing flexible sensors. However, the previously reported methods for constructing a 3D conductive network generally… Click to show full abstract

Constructing a three-dimensional (3D) conductive network in a polymer matrix is a common method for preparing flexible sensors. However, the previously reported methods for constructing a 3D conductive network generally have shortcomings such as uncontrollable processes and insufficient network continuity, which limit the practical application of this method. In this work, we report a method for constructing a dual 3D conductive network. The carbon nanotube/graphene oxide co-continuous network (primary network) was introduced on the surface of the waste silicone rubber particles (WSRPs) through the adhesion of polydopamine (PDA), and then WSRPs were bonded into a porous skeleton using nanocellulose. The carbon fiber/carbon ball interconnection network (secondary network) was constructed in liquid silicone rubber (LSR) through the interaction of host-guest dendrimers and was filled into the WSRP skeleton. The dual 3D conductive network structure endowed the sensor with high electrical and thermal conductivity, outstanding stability, and excellent durability. In addition, the sensor showed high strain sensitivity and excellent stability when detecting human body temperature and motion behavior, and the pressure distribution can be spatially mapped through the sensor matrix. These demonstrations give our sensor high potential in the fields of smart devices, body monitoring, and human-machine interfaces.

Keywords: network; dimensional conductive; silicone rubber; three dimensional; sensor

Journal Title: ACS applied materials & interfaces
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.