LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Multifunctional Textile Electronic with Sensing, Energy Storing, and Electrothermal Heating Capabilities.

Photo from wikipedia

The development of wearable devices has stimulated significant engineering and technologies of textile electronics (TEs). Improving sensing, energy-storing, and electro-heating capabilities of TEs is still challenging but crucial for their… Click to show full abstract

The development of wearable devices has stimulated significant engineering and technologies of textile electronics (TEs). Improving sensing, energy-storing, and electro-heating capabilities of TEs is still challenging but crucial for their practical applications. Herein, a drip-coating method that constructs a dense β-FeOOH scaffold on a nylon strip for enhancing polypyrrole loading is proposed, which facilitates the fabrication of highly conductive and hydrophobic PFCNS (polypyrrole/β-FeOOH/nylon strip). The space provided by the β-FeOOH scaffold increases the mass of polypyrrole on fibers from 1.1 (polypyrrole/nylon strip) to 3.0 mg cm-2 (polypyrrole/β-FeOOH/nylon strip), which decreases the resistance from 104.96 to 34.29 Ω cm-1. The PFCNS exhibits a linear elastic modulus of 0.758 MPa within 150% strain, performs a unique resistance variation mechanism, and enables great sensing capability with rapid response time (140 ms), long durability (10,000 stretching-recovering), and effective movement monitoring (e.g., breathing, back bending, jumping). The sensing signals for knee bending have been analyzed in detail by combining with both stretching and pressing response mechanisms. The PFCNS electrode attains a diffusion-controlled capacitance of 574 mF cm-2 and discharging-capacitance of 916 mF cm-2. Furthermore, an interdigitally parallel connection is proposed, which assists the PFCNS heater in achieving high temperature (84 °C) at a low voltage (4 V). This work provides a simple route for nylon-based TEs and promises satisfactory application in wearable sensors, power sources, and heaters.

Keywords: heating capabilities; energy storing; sensing energy; nylon strip

Journal Title: ACS applied materials & interfaces
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.