LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Sponge-Hosting Polyaniline Array Microstructures for Piezoresistive Sensors with a Wide Detection Range and High Sensitivity.

Photo from wikipedia

The development of highly elastic spongy conductors is attractive for use in piezoresistive sensors due to their low cost, easy fabrication, and wide sensing range. However, the combination of high… Click to show full abstract

The development of highly elastic spongy conductors is attractive for use in piezoresistive sensors due to their low cost, easy fabrication, and wide sensing range. However, the combination of high sensitivity and broad sensing range in a single piezoresistive sensor, though highly demanded, is challenging because they are contradictory in principle. Herein, a highly elastic spongy conductor with sponge-hosting polyaniline (PANI) fluff-like array microstructures is fabricated through cryopolymerization. The as-obtained sponge-hosting conductors exhibited an excellent elasticity under high compression strain and stress of up to 80% and 101 kPa, respectively, covering typical deformation ranges for detecting complex human activities. Benefiting from the presence of the sponge-hosting fluff-like PANI arrays, the as-prepared sponge-hosting conductors for piezoresistive sensors possessed a high sensitivity of 0.54 kPa-1 in a broad pressure range of 0.1-101 kPa, ascribing to the formation of the sponge-hosting fluff arrays with graded conductive network structures of array contacts and sponge-skeleton contacts at low and high compressions, respectively. As a result, the as-assembled piezoresistive sensors were demonstrated for tactile sensing and human-motion monitoring. This work reveals new approaches for tailored fabrication of sponge-hosting conducting polymers with tunable fluff-like microstructures for highly sensitive and wide-range wearable piezoresistive sensors.

Keywords: piezoresistive sensors; high sensitivity; sponge hosting; range; sponge

Journal Title: ACS applied materials & interfaces
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.