LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Bioinspired Design of High Vibration-Damping Supramolecular Elastomers Based on Multiple Energy-Dissipation Mechanisms.

Photo by mbrunacr from unsplash

Suppressing vibrations and noises is essential for our automated society. Here, inspired by the hierarchical dynamic bonds and phase separation of mussel byssal threads, we synthesize high-damping supramolecular elastomers (HDEs)… Click to show full abstract

Suppressing vibrations and noises is essential for our automated society. Here, inspired by the hierarchical dynamic bonds and phase separation of mussel byssal threads, we synthesize high-damping supramolecular elastomers (HDEs) via simple one-pot radical polymerization of butyl acrylate (BA), acrylic acid (AA), and vinylimidazole (VI). Interestingly, AA and VI not only form hydrogen bonds and ionic bonds simultaneously but also segregate into aggregates of different sizes, thereby successfully mimicking the hierarchical structure of mussel byssal threads. When applying external forces, the weak hydrogen bonds are broken at first and then the ionic bonds and aggregates are disrupted progressively from small to large deformations. Such multiple energy-dissipation mechanisms lead to the outstanding damping property of the HDEs. Therefore, the HDEs outperform commercially available rubbers in terms of sound absorption and vibration damping. Furthermore, the multiple energy-dissipation mechanisms impart the HDEs with high toughness (41.1 MJ/m3), tensile strength (21.3 MPa), and self-healing ability.

Keywords: damping supramolecular; energy dissipation; dissipation mechanisms; multiple energy

Journal Title: ACS applied materials & interfaces
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.