LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Cross-Linked Anion-Exchange Membranes with Dipole-Containing Cross-Linkers Based on Poly(terphenyl isatin piperidinium) Copolymers.

Photo from wikipedia

To balance the ionic conductivity and dimensional stability of anion-exchange membranes (AEMs), several cross-linked ether-free poly(terphenyl isatin piperidinium) copolymers were synthesized using 1,2-bis(2-aminoethoxy)ethane as a cross-linker. By introducing an alkyl… Click to show full abstract

To balance the ionic conductivity and dimensional stability of anion-exchange membranes (AEMs), several cross-linked ether-free poly(terphenyl isatin piperidinium) copolymers were synthesized using 1,2-bis(2-aminoethoxy)ethane as a cross-linker. By introducing an alkyl diamine-based hydrophobic cross-linker as a control, the effects of the dipolar-molecule-containing cross-linker on the comprehensive performance of the membranes were investigated. Cation-dipole interactions between the cations and the hydrophilic ethylene oxide cross-linker enhance the self-assembly capability of the cationic groups. The introduction of the rotatable ethylene oxide cross-linker facilitates the flexibility of the cross-linked networks, thereby promoting hydrophilic/hydrophobic phase separation and inhibiting excessive swelling of the corresponding AEMs simultaneously. The resulting PTPBHIN-O19 membrane showed a high hydroxide conductivity (151.69 mS cm-1) and low swelling ratio (10.53%) at 80 °C. Furthermore, owing to the cross-linked structure and ether-free polymer backbone with high alkali resistance, the membranes treated in 3 M NaOH at 80 °C for 1600 h maintained ≥85% of their hydroxide conductivity, indicating excellent alkaline stability. A H2/O2 fuel cell based on the PTPBHIN-O19 AEM exhibited a maximum power density of 398 mW cm-2 at 515 mA cm-2.

Keywords: cross linked; cross linker; anion exchange; cross; exchange membranes

Journal Title: ACS applied materials & interfaces
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.