LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

High Quality Factors in Superlattice Ferroelectric Hf0.5Zr0.5O2 Nanoelectromechanical Resonators.

Photo by ludovicolovi from unsplash

The discovery of ferroelectricity and advances in creating polar structures in atomic-layered hafnia-zirconia (HfxZr1-xO2) films spur the exploration of using the material for novel integrated nanoelectromechanical systems (NEMS). Despite its… Click to show full abstract

The discovery of ferroelectricity and advances in creating polar structures in atomic-layered hafnia-zirconia (HfxZr1-xO2) films spur the exploration of using the material for novel integrated nanoelectromechanical systems (NEMS). Despite its popularity, the approach to achieving high quality factors (Qs) in resonant NEMS made of HfxZr1-xO2 thin films remains unexplored. In this work, we investigate the realization of high Qs in Hf0.5Zr0.5O2 nanoelectromechanical resonators by stress engineering via the incorporation of alumina (Al2O3) interlayers. We fabricate nanoelectromechanical resonators out of the Hf0.5Zr0.5O2-Al2O3 superlattices, from which we measure Qs up to 171,000 and frequency-quality factor products (f × Q) of >1011 Hz through electrical excitation and optical detection schemes at room temperature in vacuum. The analysis suggests that clamping loss and surface loss are the limiting dissipation sources and f × Q > 1012 Hz is achievable through further engineering of anchor structure and built-in stress.

Keywords: 5zr0 5o2; quality factors; hf0 5zr0; nanoelectromechanical resonators; high quality

Journal Title: ACS applied materials & interfaces
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.