LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Multichalcogen-Integrated Cathodes for Novel Lithium-Chalcogenide Batteries in Ether and Ester Electrolytes.

Photo from wikipedia

Lithium-sulfur (Li-S) batteries and lithium-selenium (Li-Se) batteries that contain only one single active element have unique advantages and disadvantages. Inspired by ternary lithium batteries, multielement chalcogenide compounds with integrated advantages… Click to show full abstract

Lithium-sulfur (Li-S) batteries and lithium-selenium (Li-Se) batteries that contain only one single active element have unique advantages and disadvantages. Inspired by ternary lithium batteries, multielement chalcogenide compounds with integrated advantages may improve upon the performance of lithium-chalcogenide batteries at the source. In this work, activated carbon (AC) with an Al2O3@SiO2 heterojunction is used as the carrier, and the performances and mechanisms of elemental substances (X/AC, X = S, Se, and Te) are studied in ether and ester electrolytes as the basis for preparing multielement chalcogenide composites (SST/AC, SST: S-Se-Te compound). In the ester electrolyte system, SST811/AC (where S/Se/Te = 8:1:1, molar ratio) exhibited the best cycling performance, and the capacity remained at 1024.9 mA h g-1 after 300 cycles. The characterization results revealed the mechanisms and sequences of the gradual liquid-phase reactions of SST/AC in ether electrolytes and the direct solid-phase reactions in ester electrolytes. The active elements in SST/AC fully demonstrated their own functions, enabling the effective construction of new lithium-chalcogenide battery systems. This work provides inspiration for the subsequent research of multielement lithium-chalcogenide batteries and paves the way for their application.

Keywords: ester electrolytes; chalcogenide; chalcogenide batteries; lithium; lithium chalcogenide; ether ester

Journal Title: ACS applied materials & interfaces
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.