LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Enhancing Built-in Electric Field via Molecular Dipole Control in Conjugated Microporous Polymers for Boosting Charge Separation.

Photo from wikipedia

The built-in electric field (BEF) has been considered as the key kinetic factor for facilitating efficient photoinduced carrier separation and migration of polymeric photocatalysts. Enhancing the BEF of the polymers… Click to show full abstract

The built-in electric field (BEF) has been considered as the key kinetic factor for facilitating efficient photoinduced carrier separation and migration of polymeric photocatalysts. Enhancing the BEF of the polymers could enable a directional migration of the photogenerated carriers to accelerate photogenerated charge separation and thus boost photocatalytic performances. However, achieving this approach remains a formidable challenge, which has never been realized in conjugated microporous polymers (CMPs). Herein, we developed a molecular dipole control strategy to modulate the BEF in CMPs by varying the nature of the core. As a result, a series of CMPs with a tunable BEF were designed and prepared via FeCl3-mediated coupling of bicarbazole with different acceptor cores. The optimized CbzCMP-9 featured the strongest BEF induced by its high molecular dipole, which grants it with a powerful driving force to accelerate exciton dissociation into electron-hole pairs and facilitates charge transfer along the backbone of CMPs to the surface, resulting in a remarkable photocatalytic performance toward thiocyano chromones and C-3 thiocyanation of indoles (up to 95 and 98% yields, respectively) and prominently surpassing many other reported photocatalysts. In brief, the proposed strategy highlights that enhancing the BEF by modulating molecular dipole can lead to a dramatic improvement in photocatalytic performance, which is expected to be employed for constructing other photocatalytic systems with high performance.

Keywords: electric field; separation; built electric; bef; molecular dipole

Journal Title: ACS applied materials & interfaces
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.