LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Radiopaque Iodosilane-Coated Lipid Hybrid Nanoparticle Contrast Agent for Dual-Modality Ultrasound and X-ray Bioimaging.

Photo from wikipedia

Here, we report the synthesis of robust hybrid iodinated silica-lipid nanoemulsions (HSLNEs) for use as a contrast agent for ultrasound and X-ray applications. We engineered iodinated silica nanoparticles (SNPs), lipid… Click to show full abstract

Here, we report the synthesis of robust hybrid iodinated silica-lipid nanoemulsions (HSLNEs) for use as a contrast agent for ultrasound and X-ray applications. We engineered iodinated silica nanoparticles (SNPs), lipid nanoemulsions, and a series of HSLNEs by a low-energy spontaneous nanoemulsification process. The formation of a silica shell requires sonication to hydrolyze and polymerize/condensate the iodomethyltrimethoxysilane at the oil/water interface of the nanoemulsion droplets. The resulting nanoemulsions (NEs) exhibited a homogeneous spherical morphology under transmission electron microscopy. The particles had diameters ranging from 20 to 120 nm with both negative and positive surface charges in the absence and presence of cetyltrimethylammonium bromide (CTAB), respectively. Unlike CTAB-coated nanoformulations, the CTAB-free NEs showed excellent biocompatibility in murine RAW macrophages and human U87-MG cell lines in vitro. The maximum tolerated dose assessment was evaluated to verify their safety profiles in vivo. In vitro X-ray and ultrasound imaging and in vivo computed tomography were used to monitor both iodinated SNPs and HSLNEs, validating their significant contrast-enhancing properties and suggesting their potential as dual-modality clinical agents in the future.

Keywords: contrast agent; dual modality; contrast; ultrasound ray; ray

Journal Title: ACS applied materials & interfaces
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.