LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Electronegativity Enhanced Strong Metal-Support Interaction in Ru@F-Ni3N for Enhanced Alkaline Hydrogen Evolution.

Photo from wikipedia

Precious metals (Pt, Ir, Ru, and so on) and related compounds usually demonstrate superb catalytic activity for electrochemical hydrogen production. However, scarcity and stability are still challenges for hydrogen evolution… Click to show full abstract

Precious metals (Pt, Ir, Ru, and so on) and related compounds usually demonstrate superb catalytic activity for electrochemical hydrogen production. However, scarcity and stability are still challenges for hydrogen evolution reaction, even for single-atomic-site electrocatalysts. Herein, a fluorine (F) doping strategy is proposed to enhance the strong metal-support interaction between the F-doped Ni3N support and the loaded ruthenium (Ru) species. Via synergistically modulating both the Ru loading amount and F doping concentration, outstanding HER activity was achieved in Ru@F-Ni3N with an overpotential (η) of 115 mV at 100 mA cm-2, superior to the benchmark Pt/C (η = 201 mV). Density functional theory simulation in combination with X-ray photoelectron spectra and X-ray absorption spectroscopy characterizations convincingly demonstrate that, with the strongest electronegativity, F doping could effectively stabilize Ru atoms doped in the F-Ni3N substrate and simultaneously reduce the H bonding strength, which accelerated the desorption of H2. These findings provide a facile strategy to modulate both catalytic activities and stabilities of heteroatom-loaded catalytic materials.

Keywords: metal support; strong metal; hydrogen; support interaction; support; hydrogen evolution

Journal Title: ACS applied materials & interfaces
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.