LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Organic Photovoltaic Cells Based on Nonhalogenated Polymer Donors and Nonhalogenated A-DA'D-A-Type Nonfullerene Acceptors with High VOC and Low Nonradiative Voltage Loss.

Photo from wikipedia

Compared with other all-inorganic/organic-inorganic hybrid solar cells, the large voltage loss (Vloss) of organic photovoltaic (OPV) cells, especially the nonradiative voltage loss (ΔVnonrad), limited the further improvement of performance. Although… Click to show full abstract

Compared with other all-inorganic/organic-inorganic hybrid solar cells, the large voltage loss (Vloss) of organic photovoltaic (OPV) cells, especially the nonradiative voltage loss (ΔVnonrad), limited the further improvement of performance. Although A-DA'D-A-type Y-series nonfullerene acceptors (NFAs) largely improve the power conversion efficiencies (PCEs) to 18%, the open-circuit voltage (VOC) of this kind of material was still restricted to below 1.0 V. Herein, we designed and synthesized a narrow bandgap (Eg = 1.41 eV) acceptor BTA77 with an A-DA'D-A-type backbone containing a nonhalogenated terminal group to achieve high electroluminescence efficiency and high VOC. Combined with the nonhalogenated polymer PBDB-T with a conjugated thiophene side chain, BTA77 realized a VOC of 0.944 V, a Vloss of 0.552 V, and a PCE of 13.75%, which is one of the highest PCEs based on nonhalogenated A-DA'D-A-type acceptors with VOC > 0.9 V. After further blending with the nonhalogenated donor polymer PBT1-C with a conjugated phenyl side chain, the VOC increases to 1.021 V with a super low ΔVnonrad of 0.14 V owing to the greatly improved electroluminescence external quantum efficiency (EQEEL) of 4.42 × 10-3. Our results indicate that there is still a large room to decrease the ΔVnonrad and increase VOC by synergistic molecular engineering of p-type polymers and n-type small molecules.

Keywords: polymer; nonradiative voltage; loss; voltage loss; organic photovoltaic

Journal Title: ACS applied materials & interfaces
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.