LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

High Energy Density, Asymmetric, Nonaqueous Redox Flow Batteries without a Supporting Electrolyte.

Photo from wikipedia

Energy density in nonaqueous redox flow batteries (RFBs) is often limited by the modest solubility of the redox-active organic molecules (ROMs). In addition, the lack of a separator that prevents… Click to show full abstract

Energy density in nonaqueous redox flow batteries (RFBs) is often limited by the modest solubility of the redox-active organic molecules (ROMs). In addition, the lack of a separator that prevents ROMs from crossing between anolyte and catholyte solutions necessitates the use of 1:1 mixtures of two ROMs in both the anolyte and catholyte solutions in symmetric RFBs, further limiting concentrations. We show that permanently cationic oligomers of viologen, tris(dialkylamino)cyclopropenium, and phenothiazine molecules have high solubility in acetonitrile and cross over an anion exchange membrane at slow to undetectable rates, enabling the creation of asymmetric RFBs with low crossover. No added supporting electrolyte is necessary, with only the PF6- counteranions of the ROMs crossing the membrane during charge/discharge. An oligomeric viologen + oligomeric cyclopropenium RFB at 1.0 M (redox equivalents) has a voltage of 1.66 V and a theoretical energy density of 22.2 Wh/L, one of the highest reported for nonaqueous RFBs.

Keywords: nonaqueous redox; energy density; redox flow; energy

Journal Title: ACS applied materials & interfaces
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.