LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Antifouling Electrochemical Biosensor Based on Conductive Hydrogel of DNA Scaffold for Ultrasensitive Detection of ATP.

Photo by nci from unsplash

As an energy supplier, ATP plays an important role in various life activities, and there is an urgent need to develop an effective means of detecting ATP. However, the traditional… Click to show full abstract

As an energy supplier, ATP plays an important role in various life activities, and there is an urgent need to develop an effective means of detecting ATP. However, the traditional sensors face serious nonspecific adsorption. In this work, an antifouling electrochemical biosensor based on the interpenetrating network of Y-DNA scaffold and polyaniline hydrogel was designed for ATP detection. The polyaniline hydrogel was conducive to the transport of electrons and ions, the structure of Y-DNA cross-linked by ATP aptamers in the polyaniline hydrogel achieved the effect of signal amplification. Super hydrophilic cellulose nanocrystals (CNCs) and zwitterion polypeptide sequence (Pep) were doped to play a synergistic antifouling effect. The hydrogel sensor we have built has a wide linear range of 0.1 pM-1 μM for ATP detection and a low detection limit of 0.025 pM (S/N = 3). For ATP detection in actual serum samples, the recovery of this sensor was 99.5%-106%, and the relative standard deviation was 0.4%-2.88%. It is proven that the sensor has good ATP detection performance, and it will provide a certain reference value for the detection of other biological small molecules.

Keywords: dna; antifouling electrochemical; hydrogel; electrochemical biosensor; biosensor based; detection

Journal Title: ACS applied materials & interfaces
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.