LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

NIR-Driven Photocatalytic Hydrogen Production by Silane- and Tertiary Amine-Bound Plasmonic Gold Nanoprisms.

Photo from wikipedia

Near-infrared (NIR) photon-driven H2 production from water is regarded as one of the best routes for establishing a sustainable hydrogen-based energy economy. Here, we have developed a gold nanoprism-based photocatalytic… Click to show full abstract

Near-infrared (NIR) photon-driven H2 production from water is regarded as one of the best routes for establishing a sustainable hydrogen-based energy economy. Here, we have developed a gold nanoprism-based photocatalytic assembly, rationally capped with an amine and a silane ligand pair, which exhibited an excellent H2 production rate (146 μL mg-1 h-1) in neutral water while achieving an absolute incident photon-to-hydrogen conversion efficiency of 0.53%. An array of spectroscopic and microscopic experiments unravel that the amine ligand scavenges the hot hole while the silane aids the H2 production via hydrolysis during the photocatalysis on the plasmon surface. This photocatalytic H2 production reactivity can be retained for multiple cycles following the replenishment of amine and silane. Hence, this photocatalytic assembly can set up the template for a large-scale NIR-driven H2 production unit.

Keywords: silane; production; driven photocatalytic; nir driven; photocatalytic hydrogen

Journal Title: ACS applied materials & interfaces
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.