LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Enabling Long-Cycling Life of Si-on-Graphite Composite Anodes via Fabrication of a Multifunctional Polymeric Artificial Solid-Electrolyte Interphase Protective Layer.

Photo from wikipedia

The energy density of lithium-ion batteries (LIBs) can be meaningfully increased by utilizing Si-on-graphite composites (Si@Gr) as anode materials, because of several advantages, including higher specific capacity and low cost.… Click to show full abstract

The energy density of lithium-ion batteries (LIBs) can be meaningfully increased by utilizing Si-on-graphite composites (Si@Gr) as anode materials, because of several advantages, including higher specific capacity and low cost. However, long cycling stability is a key challenge for commercializing these composites. In this study, to solve this issue, we have developed a multifunctional polymeric artificial solid-electrolyte interphase (A-SEI) protective layer on carbon-coated Si@Gr anode particles (making Si@Gr/C-SCS) to prolong the cycling stability in LIBs. The coating is made of sulfonated chitosan (SCS) that is crosslinked with glutaraldehyde promoting good ionic conduction together with sufficient mechanical strength of the A-SEI. The focused ion beam-scanning electron microscopy and high-resolution transmission electron microscopy images show that the SCS is uniformly coated on the composite particles with thickness in nanometer. The anodes are investigated in Li metal cells Si@Gr/C-SCS||Li metal) and lithium-ion full-cells (LiNi0.6Co0.2Mn0.2O2 (NCM-622)||Si@Gr/C-SCS) to understand the material/electrode intrinsic degradation as well as the impact of the polymer coating on active lithium losses because of the continuous SEI (re)formation. The anode composites exhibit a high capacity reaching over 600 mAh g-1, and even without electrolyte optimization, the Si@Gr/C-SCS illustrates a superior long cycle life performance of up to 1000 cycles (over 67% capacity retention). The excellent long-term cycling stability of the anodes was attributed to the SCS polymer coating acting as the A-SEI. The simple polymer coating process is highly interesting in guiding the preparation of long-cycle-life electrode materials of high-energy LIB cells.

Keywords: long cycling; multifunctional polymeric; microscopy; life; polymeric artificial; artificial solid

Journal Title: ACS applied materials & interfaces
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.