LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Self-Enhancing Photoelectrochemical Properties in van der Waals Ferroelectric CuInP2S6 by Photoassisted Acid Hydrolysis.

Photo by brambro from unsplash

Transition metal thiophosphate, CuInP2S6 (CIPS), has recently emerged as a potentially promising material for photoelectrochemical (PEC) water splitting due to its intrinsic ferroelectric polarization for spontaneous photocarrier separation. However, the… Click to show full abstract

Transition metal thiophosphate, CuInP2S6 (CIPS), has recently emerged as a potentially promising material for photoelectrochemical (PEC) water splitting due to its intrinsic ferroelectric polarization for spontaneous photocarrier separation. However, the poor kinetics of the hydrogen evolution reaction (HER) greatly limits its practical applications. Herein, we report self-enhancing photocatalytic behavior of a CIPS photocathode due to chemically driven oxygen incorporation by photoassisted acid oxidation. The optimal oxygen-doped CIPS demonstrates a >1 order of magnitude enhancement in the photocurrent density compared to that of pristine CIPS. Through comprehensive spectroscopic and microscopic investigations combined with theoretical calculations, we disclose that oxygen doping will lower the Fermi level position and decrease the HER barrier, which further accelerates charge separation and improves the HER activity. This work may deliver a universal and facile strategy for improving the PEC performance of other van der Waals metal thiophosphates.

Keywords: van der; der waals; photoassisted acid; self enhancing; cuinp2s6

Journal Title: ACS applied materials & interfaces
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.