LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

High-Efficiency and Wavelength-Tunable Near-Infrared Emission of Lanthanide Ions Doped Lead-Free Halide Double Perovskite Nanocrystals toward Fluorescence Imaging.

Photo by theshubhamdhage from unsplash

Near-infrared (NIR) fluorescent materials show unique photophysical properties, which make them widely used in optical communication, night vision imaging, biomedicine, and other applications. However, the development of high-efficiency and wavelength-tunable… Click to show full abstract

Near-infrared (NIR) fluorescent materials show unique photophysical properties, which make them widely used in optical communication, night vision imaging, biomedicine, and other applications. However, the development of high-efficiency and wavelength-tunable NIR nanomaterials is still a challenge. Herein, a series of lanthanide ions doped Cs2AgIn0.99Bi0.01Cl6 double perovskite nanocrystals (DPNCs) with wavelength-tunable NIR light emission (800-1600 nm) have been synthesized. The optimal photoluminescence quantum yield (PLQY) of the DPNCs reaches 66.7%, which is a record value for DPNCs. It is mainly attributed to the contribution of NIR emission of lanthanide ions doped into DPNCs. More importantly, the series of NIR emission wavelengths of lanthanide ions doped Cs2AgIn0.99Bi0.01Cl6 DPNCs include not only shorter-wavelength NIR light (≤900 nm) but also longer-wavelength NIR light (>900 nm), which are more appropriate for foodstuff analysis and medical diagnosis applications. Furthermore, 11.2% Nd3+ doped Cs2AgIn0.99Bi0.01Cl6 DPNCs with the optimal PLQY were embedded in a polymethyl methacrylate (PMMA) polymer matrix (DPNCs@PMMA), and the stability of DPNCs modified by PMMA has been greatly improved. Finally, the 11.2% Nd3+ ions doped Cs2AgIn0.99Bi0.01Cl6 DPNCs@PMMA based NIR LEDs have demonstrated good night vision and human tissue penetration. This work indicates that lanthanide ions doped DPNCs have a potential in NIR light applications and could inspire future research to explore novel lanthanide ions doped semiconductor NCs based NIR LEDs.

Keywords: ions doped; lanthanide ions; emission; wavelength tunable; nir

Journal Title: ACS applied materials & interfaces
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.