LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Dual-Mode-Driven Micromotor Based on Foam-like Carbon Nitride and Fe3O4 with Improved Manipulation and Photocatalytic Performance.

Micro/nanomotors have emerged as a vibrant research topic in biomedical and environmental fields due to their attractive self-propulsion as well as small-scale functionalities. However, single actuated micro/nanomotors are not adaptive… Click to show full abstract

Micro/nanomotors have emerged as a vibrant research topic in biomedical and environmental fields due to their attractive self-propulsion as well as small-scale functionalities. However, single actuated micro/nanomotors are not adaptive in facing intricate natural and industrial environments. Herein, we propose a new dual-mode-driven micromotor based on foam-like carbon nitride (f-C3N4) with precipitated Fe3O4 nanoparticles, namely, Fe3O4/f-C3N4, powered by chemical/magnetic stimuli for rapid reduction of organic pollutants. The Fe3O4/f-C3N4 motor composed of a three-dimensional (3D) porous "foam-like" structure and precipitated Fe3O4 nanoparticles (ca. 50 nm) not only exhibits efficient photocatalytic performance under visible light but also shows versatile and programmable motion behavior under the control of external magnetic fields. The aggregation of the micromotor under an external rotating magnetic field further enhances the catalytic activity by the increased local catalyst concentration. Furthermore, the magnetic property endows the micromotor with easy recyclability. This study provides a novel dual-mode-driven micromotor for antibiotics removal with magnetic field and light-enhanced performance in industrial wastewater treatment at a low cost.

Keywords: driven micromotor; micromotor; foam like; mode driven; dual mode

Journal Title: ACS applied materials & interfaces
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.