LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Green-Solvent-Processable Low-Cost Fluorinated Hole Contacts with Optimized Buried Interface for Highly Efficient Perovskite Solar Cells.

Photo from wikipedia

Solution-processed hole contact materials, as an indispensable component in perovskite solar cells (PSCs), have been widely studied with consistent progress achieved. One bottleneck for the commercialization of PSCs is the… Click to show full abstract

Solution-processed hole contact materials, as an indispensable component in perovskite solar cells (PSCs), have been widely studied with consistent progress achieved. One bottleneck for the commercialization of PSCs is the lack of hole contact materials with high performance, cost-effective preparation, and green-solvent processability. Therefore, the development of versatile hole contact materials is of great significance. Herein, we report two novel donor-acceptor (D-A)-type hole contact molecules (FMPA-BT-CA and 2FMPA-BT-CA) with low cost and alcohol-based processability by utilizing a fluorination strategy. We showed that the fluorine atoms lead to the lowered highest occupied molecular orbital (HOMO) energy levels and larger dipole moments for FMPA-BT-CA and 2FMPA-BT-CA. Moreover, fluorination also improves the buried interfacial interaction between hole contacts and perovskite. As a result, a remarkable power conversion efficiency (PCE) of 22.37% along with good light stability could be achieved for green-solvent-processed FMPA-BT-CA-based inverted PSC devices, demonstrating the great potential of environmentally compatible hole contacts for highly efficient PSCs.

Keywords: hole contact; cost; solar cells; green solvent; hole contacts; perovskite solar

Journal Title: ACS applied materials & interfaces
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.