LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Self-assembly of POSS-Polystyrene Bottlebrush Block Copolymers on an Angle-Robust Selective Absorber for Enhancing the Purity of Reflective Structural Color.

Photo from wikipedia

A facile approach for improving color purity is explored by the introduction of an angle-robust selective absorber (ARSA) into bottlebrush block copolymer (BBCP)-based one-dimensional (1D) photonic crystals (PCs). The BBCPs… Click to show full abstract

A facile approach for improving color purity is explored by the introduction of an angle-robust selective absorber (ARSA) into bottlebrush block copolymer (BBCP)-based one-dimensional (1D) photonic crystals (PCs). The BBCPs of poly[(3-(12-(cis-5-norbornene-exo-2,3-dicarboximido)dodecanoylamino)propyl POSS)-block-(norbornene-graft-styrene)], Px (x = 1-4), with ultrahigh molecular weights (Mn ∼ 2260 kDa) and low dispersities (D̵ ∼ 1.07) are synthesized by ring-opening metathesis polymerization. The 1D PCs of the lamellar structure are fabricated by self-assembly of the BBCP with different periodicities for full color-generation (blue, green, and red). The optically tailored substrate (i.e., ARSA) is used to modulate the spectral line shape with selective absorption in the near-infrared range. Optical simulation proposes the optimized 1D PC structures on the ARSA, and it provides the reproducibility of the predictable color. The simulated structures are well matched with the experimental results, verifying the enhancement of color saturation even at various incident angles (0-70°).

Keywords: robust selective; color; selective absorber; angle robust; block; bottlebrush block

Journal Title: ACS applied materials & interfaces
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.