LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Fish-Waste-Derived Gelatin and Carbon Dots for Biobased UV-Blocking Films

Photo by tangzhengtao from unsplash

The fish industry produces every year huge amounts of waste that represent an underutilized source of chemical richness. In this contribution, type I collagen was extracted from the scales of… Click to show full abstract

The fish industry produces every year huge amounts of waste that represent an underutilized source of chemical richness. In this contribution, type I collagen was extracted from the scales of Mugil cephalus and carbon dots (CDs) were synthesized from the scales of Dicentrarchus labrax. These materials were combined to make hybrid films with UV-blocking ability, by casting a mixture of gelatin, glycerol (15%), and CDs (0, 1, 3, and 5%). The films were fully characterized from the mechanical, morphological, and optical point of view. Here, 40 μm thick films were obtained, characterized by a high water solubility (70%); moreover, the presence of CDs improved the film mechanical properties, in particular increasing the tensile strength (TS) up to 17 MPa and elongation at break (EAB) up to 40%. The CDs also modulated water vapor permeability and the thermal stability of the films. From the optical point of view, with just 5% loading of CDs the films blocked almost 70% of the UV radiation with negligible change in transparency (88.6% for the nonloaded vs 84.4% for 5% CDs) and opacity (1.32 for nonloaded vs 1.61 for 5% CDs). These types of hybrid biobased films hold promise for the production of sustainable UV-shields both for human health and for prolonging the shelf life of food.

Keywords: fish waste; waste derived; carbon; derived gelatin; gelatin carbon; carbon dots

Journal Title: ACS Applied Materials & Interfaces
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.