The Fe-based Prussian blue (Fe-PB) composite is considered as one of the most potential cathode materials for sodium-ion batteries because of its abundant iron resources and high theoretical capacity. However,… Click to show full abstract
The Fe-based Prussian blue (Fe-PB) composite is considered as one of the most potential cathode materials for sodium-ion batteries because of its abundant iron resources and high theoretical capacity. However, the crystal water and vacancy in the Fe-PB structure will lead to poor capacity and cycle stability. In this work, a Cu-modified Fe-PB composite (FeCu-PB@CuO) is successfully prepared through regulating the Fe-PB structure by Cu doping and engineering the surface by CuO coating. The density functional theory calculation results confirm that Cu preferentially replaces FeHS in the Fe-PB lattice and Cu doping reduces the bandgap. Our experiment results reveal that CuO coating can provide more active sites, inhibit side reactions, and potentially enhance the activity of FeHS. Due to the synergistic effect of Cu doping and CuO coating, FeCu-PB@CuO has a considerable initial discharge capacity of 123.5 mAh g-1 at 0.1 A g-1. In particular, at 2 A g-1, it delivers an impressive initial capacity of 84.3 mAh g-1, and the capacity decreasing rate of each cycle is only 0.02% over 1500 cycles. Therefore, the synergistic modification strategy of metal ion doping and metal oxide coating has tremendous application potential and can be extended to other electrode materials.
               
Click one of the above tabs to view related content.