LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Deep Learning Extraction of the Temperature-Dependent Parameters of Bulk Defects.

Photo from wikipedia

Bulk defects in silicon solar cells are a key contributor to loss of efficiency. To detect and identify those defects, temperature- and injection-dependent lifetime spectroscopy is usually used, and the… Click to show full abstract

Bulk defects in silicon solar cells are a key contributor to loss of efficiency. To detect and identify those defects, temperature- and injection-dependent lifetime spectroscopy is usually used, and the defect parameters are traditionally extracted using fitting methods to the Shockley-Read-Hall recombination statistics. In this study, we propose a deep learning-based extraction technique that is based on an alternative representation of the lifetime curves: lifetime mapping in the temperature and minority carrier concentration space. The deep learning approach successfully predicts all the defect parameters while addressing one of the main limitations of the traditional approach of locating the defect in the energy spectrum, which usually outputs two possible solutions. Furthermore, the approach is applied to temperature-dependent defect parameters where the traditional approach is not applicable, achieving satisfying levels of prediction of the defect parameters. Image representation and deep learning have the potential to bolster solar cell characterization techniques by extracting more insights from the characterization data.

Keywords: defect parameters; temperature dependent; bulk defects; extraction; temperature; deep learning

Journal Title: ACS applied materials & interfaces
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.