LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Electrodeposited Cobalt Nanosheets on Smooth Silver as a Bifunctional Catalyst for OER and ORR: In Situ Structural and Catalytic Characterization.

Photo by ninjason from unsplash

Developing earth-abundant, cost-effective, and active bifunctional electrocatalysts for oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) is key to boosting sustainable energy systems such as electrolyzers and lithium-air batteries.… Click to show full abstract

Developing earth-abundant, cost-effective, and active bifunctional electrocatalysts for oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) is key to boosting sustainable energy systems such as electrolyzers and lithium-air batteries. However, the performance of promising cobalt-based materials is impaired by the external effects of binders and carbon additives as well as inhomogeneous electrode fabrication. In this work, binder- and carbon-free flower-like Co-decorated Ag catalytic nanosheets were in situ-synthesized via a simple electrodeposition approach. The morphology, composition, and structure of Co/Ag before and after OER were characterized using scanning electron microscopy (SEM), energy-dispersive X-ray (EDX), X-ray photoelectron spectroscopy (XPS), and X-ray diffraction (XRD). Co/Ag thin film electrodes with various Co contents exhibited a bifunctional activity toward ORR and OER due to a synergistic effect. XPS analysis suggested the formation of Co3O4 as the main active species for OER. In particular, Co (83%)/Ag surface revealed a 60 mV lower ORR overpotential than a pure Ag surface and even lower than drop-casted Co3O4 nanoparticles on Ag surface. Only 1.5% peroxide was generated, suggesting a four-electron transfer ORR. In addition, the OER onset potential on Co/Ag is 60 mV less than Co3O4. Tafel slopes of 71 and 75 mV dec-1 were obtained for ORR and OER, respectively. Importantly, the three-dimensional (3D) growth mechanism of a cobalt layer (∼1 nm) on a well-defined atomic smooth Ag surface is unraveled by in situ electrochemical scanning tunneling microscopy (EC-STM). EC-STM suggests that Co prefers to nucleate at the step edges of Ag and grows in a 3D, forming nanoparticles, where the deposition/dissolution process of the Co adlayer on Ag is reversible. This investigation may provide insights into design strategies of efficient oxygen electrocatalysts.

Keywords: nanosheets smooth; electrodeposited cobalt; oer; microscopy; cobalt nanosheets; orr

Journal Title: ACS applied materials & interfaces
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.