Neurons are vital components of the brain. When stimulated by neurotransmitters at the dendrites, neurons deliver signals as changes in the membrane potential by ion movement. The signal transmission of… Click to show full abstract
Neurons are vital components of the brain. When stimulated by neurotransmitters at the dendrites, neurons deliver signals as changes in the membrane potential by ion movement. The signal transmission of a nervous system exhibits a high energy efficiency. These characteristics of neurons are being exploited to develop efficient neuromorphic computing systems. In this study, we develop chemical synapses for neuromorphic devices and emulate the signaling processes in a nervous system using a polymer membrane, in which the ionic permeability can be controlled. The polymer membrane comprises poly(diallyl-dimethylammonium chloride) and poly(3-sulfopropyl acrylate potassium salt), which have positive and negative charges, respectively. The ionic permeability of the polymer membrane is controlled by the injection of a neurotransmitter solution. This device emulates the signal transmission behavior of biological neurons depending on the concentration of the injected neurotransmitter solution. The proposed artificial neuronal signaling device can facilitate the development of bio-realistic neuromorphic devices.
               
Click one of the above tabs to view related content.