LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

New Perylene Diimide Ink for Interlayer Formation in Air-Processed Conventional Organic Photovoltaic Devices.

Photo from wikipedia

Roll-to-roll coating of conventional organic photovoltaic architectures in air necessitates low work function, electron-harvesting interlayers as the top interface, termed cathode interlayers. Traditional materials based on metal oxides are often… Click to show full abstract

Roll-to-roll coating of conventional organic photovoltaic architectures in air necessitates low work function, electron-harvesting interlayers as the top interface, termed cathode interlayers. Traditional materials based on metal oxides are often not compatible with coating in air and/or green solvents, require thermal annealing, and are limited in feasibility due to interactions with underlying layers. Alternatively, perylene diimide materials offer easily tunable redox properties, are amenable to air coating in green solvents, and are considered champion organic-based cathode interlayers. However, underlying mechanisms of the extraction of photogenerated electrons are less well understood. Herein, we demonstrate the utilization of two N-annulated perylene diimide materials, namely, PDIN-H and CN-PDIN-H, in air-processed conventional organic photovoltaic devices, using the now standard PM6:Y6 photoactive layer. The processing ink formulation using cesium carbonate as a processing agent to solubilize the perylene diimides in suitable green solvents (1-propanol and ethyl acetate) for uniform film formation using spin or slot-die coating on top of the photoactive layer is critical. Cesium carbonate remains in the film, creating hybrid organic/metal salt cathode interlayers. Best organic photovoltaic devices have power conversion efficiencies of 13.2% with a spin-coated interlayer and 13.1% with a slot-die-coated interlayer, superior to control devices using the classic conjugated polyelectrolyte PFN-Br as an interlayer (ca. 12.8%). The cathode interlayers were found to be semi-insulating in nature, and the device performance improvements were attributed to beneficial interfacial effects and electron tunneling through sufficiently thin layers. The efficiencies beyond 13% achieved in air-processed organic photovoltaic devices utilizing slot-die-coated cathode interlayers are among the highest reported so far, opening new opportunities for the fabrication of large-area solar cell modules.

Keywords: organic photovoltaic; photovoltaic; cathode interlayers; air; photovoltaic devices; conventional organic

Journal Title: ACS applied materials & interfaces
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.