LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Bilayer Halide Electrolytes for All-Inorganic Solid-State Lithium-Metal Batteries with Excellent Interfacial Compatibility.

Photo from wikipedia

Inorganic solid-state electrolytes (ISSEs) have been extensively researched as the critical component in all-solid-state lithium-metal batteries (ASSLMBs). Many ISSEs exhibit high ionic conductivities up to 10-3 S cm-1. However, most… Click to show full abstract

Inorganic solid-state electrolytes (ISSEs) have been extensively researched as the critical component in all-solid-state lithium-metal batteries (ASSLMBs). Many ISSEs exhibit high ionic conductivities up to 10-3 S cm-1. However, most of them suffer from poor interfacial compatibility with electrodes, especially lithium-metal anodes, limiting their application in high-performance ASSLMBs. To achieve good interfacial compatibility with a high-voltage cathode and a lithium-metal anode simultaneously, we propose Li3InCl6/Li2OHCl bilayer halide ISSEs with complementary advantages. In addition to the improved interfacial compatibility, the Li3InCl6/Li2OHCl bilayer halide ISSEs exhibit good thermal stability up to 160 °C. The Li-symmetric cells with sandwich electrolytes Li2OHCl/Li3InCl6/Li2OHCl exhibit long cycling life of over 300 h and a high critical current density of over 0.6 mA cm-2 at 80 °C. Moreover, the all-inorganic solid-state lithium-metal batteries (AISSLMBs) LiFePO4-Li3InCl6/Li3InCl6/Li2OHCl/Li fabricated by a facile cold-press method exhibit good rate performance and long-term cycling stability that stably cycle for about 3000 h at 80 °C. This work presents a facile and cost-effective method to construct bilayer halide ISSEs, enabling the development of high-performance AISSLMBs with good interfacial compatibility and thermal stability.

Keywords: solid state; interfacial compatibility; lithium metal; bilayer halide

Journal Title: ACS applied materials & interfaces
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.