LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Donor-Acceptor Type of Fused-Ring Thermally Activated Delayed Fluorescence Compounds Constructed through an Oxygen-Containing Six-Membered Ring.

Photo from wikipedia

Nowadays, thermally activated delayed fluorescence (TADF) compounds with a fused-ring core skeleton are getting increasing research interest because of their use in high-performance organic light-emitting diodes (OLEDs). In this study,… Click to show full abstract

Nowadays, thermally activated delayed fluorescence (TADF) compounds with a fused-ring core skeleton are getting increasing research interest because of their use in high-performance organic light-emitting diodes (OLEDs). In this study, TADF compounds featuring a D-A-type fused-ring core skeleton are developed. The challenging compatibility of a planarized D-A arrangement and the TADF property is achieved through linking the D and A moieties with two oxygen atoms within a six-membered ring. Compared with a single-oxygen analogue possessing a flexible skeleton and a twisted D-A arrangement, these fused-ring compounds with higher skeleton rigidity show higher photoluminescence quantum yields and narrower emission spectra in toluene and in doped thin films. Their electroluminescent devices achieve high external quantum efficiencies (up to 19.4%), suggesting the potential of rarely achieved D-A-type fused-ring TADF systems to serve as high-performance emitters of OLEDs.

Keywords: thermally activated; activated delayed; type fused; oxygen; fused ring

Journal Title: ACS applied materials & interfaces
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.