LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Rapid Discovery of Efficient Long-Wavelength Emission Garnet:Cr NIR Phosphors via Multi-Objective Optimization.

High-efficiency long-wavelength emission near-infrared (NIR) phosphors are the key to next-generation LED light sources. However, high-efficiency phosphors usually exhibit narrow-band emission at shorter wavelengths due to the crystal field intensity.… Click to show full abstract

High-efficiency long-wavelength emission near-infrared (NIR) phosphors are the key to next-generation LED light sources. However, high-efficiency phosphors usually exhibit narrow-band emission at shorter wavelengths due to the crystal field intensity. In this paper, we utilize multi-objective optimization to discover the NIR phosphor Gd3Mg0.5Al1.5Ga2.5Ge0.5O12:0.04Cr3+. It exhibits a broadband NIR emission from 650 to 1100 nm peaking at 763 nm, with a full width at half maximum (FWHM) of 150 nm, an internal quantum efficiency (IQE)/external quantum efficiency (EQE) of 90%/53.1%, and good thermal stability (85.3% @ 150 °C). The packaging results show that ∼53.2 mW of output power is achieved at 915 mW input power, which suggests promising applications for NIR pc-LED. Our approach is based on the data of emission wavelength (WL) and IQE for garnet:Cr NIR phosphors to construct machine learning models. An active learning strategy is used to make tradeoffs between WL and IQE, and we are able to find the targeted phosphor after only four iterations of synthesis and characterization.

Keywords: multi objective; nir phosphors; emission; wavelength emission; objective optimization; long wavelength

Journal Title: ACS applied materials & interfaces
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.