LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Dendrimer-siRNA Conjugates for Targeted Intracellular Delivery in Glioblastoma Animal Models.

Small interfering RNAs (siRNAs) are potent weapons for gene silencing, with an opportunity to correct defective genes and stop the production of undesirable proteins, with many applications in central nervous… Click to show full abstract

Small interfering RNAs (siRNAs) are potent weapons for gene silencing, with an opportunity to correct defective genes and stop the production of undesirable proteins, with many applications in central nervous system (CNS) disorders. However, successful delivery of siRNAs to the brain parenchyma faces obstacles such as the blood-brain barrier (BBB), brain tissue penetration, and targeting of specific cells. In addition, siRNAs are unstable under physiological conditions and are susceptible to protein binding and enzymatic degradation, necessitating a higher dosage to remain effective. To address these issues and advance siRNA delivery, we report the development of covalently conjugated hydroxyl-terminated poly(amidoamine) (PAMAM) dendrimer-siRNA conjugates, demonstrated with a siRNA against GFP (siGFP) conjugate (D-siGFP) utilizing glutathione-sensitive linkers. This allows for precise nucleic acid loading, protects the payload from premature degradation, delivers the siRNA cargo into cells, and achieves significant GFP knockdown in vitro (∼40%) and in vivo (∼30%). Compared to commercially available delivery systems such as RNAi Max and Lipofectamine, D-siGFP retains the potency of the siRNA in vitro. In addition, the dendrimer-siGFP conjugate significantly enhances the half-life of siRNA in the presence of plasma and endonucleases and maintains the passive targeting ability of PAMAM dendrimers to reactive microglia. When administered intratumorally to orthotopic glioblastoma multiform tumors (GBM) in CX3CR-1GFP mice, D-siGFP localizes in tumor-associated macrophages (TAMs) within the tumor parenchyma, minimizing off-target effects in other cell populations. The facile conjugation strategy for dendrimer-siRNA conjugates presented here offers a promising approach for targeted, systemic intracellular delivery of siRNA, serving as a potential bridge for the clinical translation of RNAi therapies.

Keywords: sigfp; dendrimer sirna; sirna conjugates; intracellular delivery; delivery

Journal Title: ACS applied materials & interfaces
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.