LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Fast-Coating Process Based on Elongated Rodlike Preaggregate for Highly Oriented Thin Film of Donor-Acceptor π-Conjugated Polymer.

Photo from wikipedia

A fast meniscus-guided coating for ultrahighly oriented thin films of a typical donor-acceptor π-conjugated polymer, poly[2,5-(2-octyldodecyl)-3,6-diketopyrrolopyrrole-alt-5,5-(2,5-di(thien-2-yl)thieno[3,2-b]thiophene)](PDPP-DTT) was realized. A coating speed higher than 100 mm/s, which was regarded as a… Click to show full abstract

A fast meniscus-guided coating for ultrahighly oriented thin films of a typical donor-acceptor π-conjugated polymer, poly[2,5-(2-octyldodecyl)-3,6-diketopyrrolopyrrole-alt-5,5-(2,5-di(thien-2-yl)thieno[3,2-b]thiophene)](PDPP-DTT) was realized. A coating speed higher than 100 mm/s, which was regarded as a Landau-Levich regime, was applicable. The 2D order parameter (S2) of the thin films changed by selecting the solvent and adjusting the initial concentration of the solution, and the large elongated rodlike preaggregates formed particularly in chlorobenzene contributed to the high orientation in the solid film state, resulting in the highest value of S2 = 0.87. Focused on the PDPP-DTT preaggregate formation in the solution, the SAXS analysis was carried out to investigate the shape and size of the preaggregates. The mechanism of the molecular orientation was discussed by taking the preaggregates and the solution flow under the coating process into account.

Keywords: coating process; conjugated polymer; oriented thin; donor acceptor; elongated rodlike; acceptor conjugated

Journal Title: ACS applied materials & interfaces
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.