LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Electrolyte Regulation for Non-Graphitic Carbon to Achieve Stable Long-Cycling K-Storage.

Photo from wikipedia

Potassium-ion batteries have been considered as a promising next-generation energy storage system due to low cost but comparable energy density to lithium-ion batteries. However, carbon-based anode materials usually delivered unsatisfactory… Click to show full abstract

Potassium-ion batteries have been considered as a promising next-generation energy storage system due to low cost but comparable energy density to lithium-ion batteries. However, carbon-based anode materials usually delivered unsatisfactory K-storage capacity as well as long-cycling performance due to poor matching with common electrolytes, thus forming an unstable solid electrolyte interphase (SEI). Herein, a robust KF-rich SEI can be achieved on the as-prepared non-graphitic carbon surface by regulating the electrolyte solvation structures, which can significantly suppress redox reaction of solvents and ensure highly reversible K+ intercalation/deintercalation. As a result, the as-synthesized non-graphitic carbon anode predictably exhibits super long-cycling performance with about 200 mA h/g at 100 mA/g for 1000 cycles and a stable capacity of 135 mA h/g at 500 mA/g for 2000 cycles with negligible capacity decay in the optimized 3 M KFSI/DME electrolyte. This work provides deep insights into further development and improvement of advanced electrolyte systems for next generation energy storage devices.

Keywords: long cycling; graphitic carbon; non graphitic; electrolyte regulation; storage

Journal Title: ACS applied materials & interfaces
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.