LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Three-Dimensional Honeycomb-Like Carbon as Sulfur Host for Sodium-Sulfur Batteries without the Shuttle Effect.

Photo from wikipedia

Sodium-sulfur batteries operating at ambient temperature are being extensively studied because of the high theoretical capacity and abundant resources, yet the long-chain polysulfides' shuttle effect causes poor cycling performance of… Click to show full abstract

Sodium-sulfur batteries operating at ambient temperature are being extensively studied because of the high theoretical capacity and abundant resources, yet the long-chain polysulfides' shuttle effect causes poor cycling performance of Na-S batteries. We report an annealing/etching method to converse low-cost wheat bran to a 3D honeycomb-like carbon with abundant micropores (WBMC), which is smaller than S8 molecular size (∼0.7 nm). Thus, the microporous structure could only fill small molecular sulfur (S2-4). The micropores made sulfur a one-step reaction without the shuttle effect due to the formed short-chain polysulfides being insoluble. The WBMC@S exhibits an excellent initial capacity (1413 mAh g-1) at 0.2 C, outstanding cycling performance (822 mAh g-1 after 100 cycles at 0.2 C), and high rate performance (483 mAh g-1 at 3.0 C). The electrochemical performance proves that the steric confinement of micropores effectively terminates the shuttle effect.

Keywords: shuttle effect; sodium sulfur; sulfur; sulfur batteries; honeycomb like

Journal Title: ACS applied materials & interfaces
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.