LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Mechanically Strong and Thermally Stable Chemical Cross-Linked Polyimide Aerogels for Thermal Insulator.

Photo from wikipedia

High-performance thermal insulating materials are highly desirable in several fields, especially for thermal insulation of buildings to reduce energy consumption. Owing to the remarkable thermal stability, high porosity, low density,… Click to show full abstract

High-performance thermal insulating materials are highly desirable in several fields, especially for thermal insulation of buildings to reduce energy consumption. Owing to the remarkable thermal stability, high porosity, low density, and outstanding mechanical features, polyimide (PI) aerogels have attracted great attention. In this work, chemical cross-linked PI (CCPI) aerogels were fabricated via freeze-drying and thermal imidization, which possess outstanding mechanical properties, good thermal stability, and excellent thermal insulation characteristics. The chemically cross-linked structure can effectively inhibit shrinkage, while retaining the structural integrity, resulting in the lower density and lower shrinkage of the materials. In this paper, completely imidized and highly cross-linked polyimide aerogels were synthesized by using p-phenylenediamine (PDA), 3,3',4,4'-biphenyltetracarboxylic dianhydride (BPDA), and the cross-linker 2,3,6,7,14,15-hexaaminotriptycene (HMT). The CCPI aerogels with excellent properties, such as covalently cross-linked chemical structure, low density (0.069 g/cm3), low volume shrinkage (10%), high decomposition temperature (Td5% = 587 °C), and low thermal conductivity (25 mW m-1K-1) are in high demand in the field of thermal insulation. This work furnishes a new method for the development of polymer-based thermal insulation materials for various prospective applications.

Keywords: cross linked; linked polyimide; thermal insulation; chemical cross; cross; polyimide aerogels

Journal Title: ACS applied materials & interfaces
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.