LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Nanostructured La0.75Sr0.25Cr0.5Mn0.5O3–Ce0.8Sm0.2O2 Heterointerfaces as All-Ceramic Functional Layers for Solid Oxide Fuel Cell Applications

Photo by ktsfish from unsplash

The use of nanostructured interfaces and advanced functional materials opens up a new playground in the field of solid oxide fuel cells. In this work, we present two all-ceramic thin-film… Click to show full abstract

The use of nanostructured interfaces and advanced functional materials opens up a new playground in the field of solid oxide fuel cells. In this work, we present two all-ceramic thin-film heterostructures based on samarium-doped ceria and lanthanum strontium chromite manganite as promising functional layers for electrode application. The films were fabricated by pulsed laser deposition as bilayers or self-assembled intermixed nanocomposites. The microstructural characterization confirmed the formation of dense, well-differentiated, phases and highlighted the presence of strong cation intermixing in the case of the nanocomposite. The electrochemical properties—solid/gas reactivity and in-plane conductivity—are strongly improved for both heterostructures with respect to the single-phase constituents under anodic conditions (up to fivefold decrease of area-specific resistance and 3 orders of magnitude increase of in-plane conductivity with respect to reference single-phase materials). A remarkable electrochemical activity was also observed for the nanocomposite under an oxidizing atmosphere, with no significant decrease in performance after 400 h of thermal aging. This work shows how the implementation of nanostructuring strategies not only can be used to tune the properties of functional films but also results in a synergistic enhancement of the electrochemical performance, surpassing the parent materials and opening the field for the fabrication of high-performance nanostructured functional layers for application in solid oxide fuel cells and symmetric systems.

Keywords: functional layers; nanostructured la0; solid oxide; oxide fuel; la0 75sr0

Journal Title: ACS Applied Materials & Interfaces
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.