LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Vapor-Deposited Amino Coupling of Hybrid Perovskite Single Crystals and Silicon Wafers toward Highly Efficient Multiwavelength Photodetection.

Photo by francogio from unsplash

The complementary integration of perovskite single crystals (PSCs) and silicon-based circuitry provides a feasible way to combine their superiority toward efficient multiwavelength photodetection and imaging readout; however, it suffers from… Click to show full abstract

The complementary integration of perovskite single crystals (PSCs) and silicon-based circuitry provides a feasible way to combine their superiority toward efficient multiwavelength photodetection and imaging readout; however, it suffers from distinct lattice mismatch as well as the ambiguous coupling interface effect. Herein, we develop a vacuum-assisted vapor deposition strategy to realize an ultrauniform aminosiloxane interface-modified silicon wafer, which enables the monolithic epitaxial growth of PSCs with the highest mechanical coupling strength up to 340,000 N m-2 achieved so far. According to the molecular coupling engineering development with different aminosiloxanes, we achieve a highly efficient multiwavelength-responsive integrated photodetector, possessing specific photodetectivity values of 4.36 × 1012 jones and 4.55 × 1011 jones within the visible and NIR regions, respectively, as well as the lowest X-ray detection limit of 42.6 nGyair s-1. Moreover, a particularly wide -3dB cut-off frequency of 6350 Hz as well as a 120 dB linear dynamic range (LDR) also endows the integrated device with excellent dynamic photodetection capability. This work provides an efficacious approach in the integration technology for PSC-based optoelectronic applications.

Keywords: single crystals; efficient multiwavelength; perovskite single; multiwavelength photodetection; multiwavelength

Journal Title: ACS applied materials & interfaces
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.