LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Interface-Confined Channels Facilitating Water Transport through an IL-Enriched Nanocomposite Membrane.

Photo by a2eorigins from unsplash

Improving the permeance of the polyamide (PA) membrane while maintaining the rejection is crucial for promoting the development of membrane separation technology in the practical water-treatment industry. Herein, a novel… Click to show full abstract

Improving the permeance of the polyamide (PA) membrane while maintaining the rejection is crucial for promoting the development of membrane separation technology in the practical water-treatment industry. Herein, a novel metal-ionic liquid (Zn-IL) coordination compound was synthesized by in situ growth to improve the water permeance of PA nanofiltration membranes, using an amine-functionalized IL (1-aminopropyl-3-methylimidazolium chloride, [AEMIm][Cl]) as a ligand to react with Zn(NO3)2ยท6H2O. Piperazine (PIP) and trimesoyl chloride (TMC) were adopted to prepare the PA layer covering the Zn-IL complex. Due to the unique property of the Zn-IL complex, the Zn-IL/PIP-TMC absorbing force to water was increased, enabling the fast transport of water molecules through the membrane pore channels in the form of free water. The resulting Zn-IL/PIP-TMC nanocomposite membrane exhibited a high permeance of up to 26.5 L m-2 h-1 bar-1, which is 3 times that of the PIP-TMC membrane (8.8 L m-2 h-1 bar-1), combined with rejection above 99% for dyes such as methyl blue.

Keywords: pip tmc; interface confined; water; nanocomposite membrane; confined channels

Journal Title: ACS applied materials & interfaces
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.