Herein, this work aims to carry out controlled self-assembly of single-composition block copolymer for the fabrication of various nanonetwork silica monoliths. With the use of lamellae-forming polystyrene-block-polydimethylsiloxane (PS-b-PDMS), nanonetwork-structured films… Click to show full abstract
Herein, this work aims to carry out controlled self-assembly of single-composition block copolymer for the fabrication of various nanonetwork silica monoliths. With the use of lamellae-forming polystyrene-block-polydimethylsiloxane (PS-b-PDMS), nanonetwork-structured films could be fabricated by solvent annealing using a PS-selective solvent (chloroform). By simply tuning the flow rate of nitrogen purge to the PS-selective solvent for the controlled self-assembly of the PS-b-PDMS, gyroid- and diamond-structured monoliths can be formed due to the difference in the effective volume of PS in the PS-b-PDMS during solvent annealing. As a result, well-ordered nanonetwork SiO2 (silica) monoliths can be fabricated by templated sol-gel reaction using hydrofluoric acid etched PS-b-PDMS film as a template followed by the removal of the PS. This bottom-up approach for the fabrication of nanonetwork materials through templated synthesis is appealing to create nanonetwork materials for various applications.
               
Click one of the above tabs to view related content.