LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Improved Crystallization Quality of FAPbBr3 Single Crystals by a Seeded Solution Method.

Photo from wikipedia

Solution-grown hybrid perovskite, FAPbBr3, has attracted great attentions recently due to its inspiring optoelectronic properties and low-cost preparation method. However, challenges of solution growth for FAPbBr3 bulk crystals remain yet,… Click to show full abstract

Solution-grown hybrid perovskite, FAPbBr3, has attracted great attentions recently due to its inspiring optoelectronic properties and low-cost preparation method. However, challenges of solution growth for FAPbBr3 bulk crystals remain yet, such as uncontrollable crystalline morphologies, irregular shapes, and limited crystal sizes, which are attributed to the dense crystallization nucleus. In this work, we investigate the effects of growth conditions and seed behaviors on the crystallization quality and the yield of FAPbBr3 single crystals. First, the spontaneous nucleation is tailored by optimizing the precursor concentration and heating rate. Furthermore, the seeded crystals are introduced to solve the issues related to the morphology and the yield of single crystals. Based on the above-mentioned investigations, an optimized growth method, a seeded solution method, under a heating rate of 0.1 °C/h is proposed, and centimeter-scale FAPbBr3 single crystals with a very narrow FWHM of high-resolution X-ray diffraction rocking curves and a high yield of ∼100% of single crystals are obtained. The resulting FAPbBr3 single crystal exhibits a bulk resistivity of 3.42 × 109 Ω·cm and a superior ION/IOFF ratio over 104 under 405 nm light at a bias of 10 V. Finally, the pulse height spectra with an energy resolution of ∼21.4% are also achieved based on an AZO/FAPbBr3/Au detector, illuminated using an uncollimated [email protected] MeV α-particle source at room temperature. This modified seeded solution method shows great potential in preparing high-quality and high-yield perovskite single crystals.

Keywords: single crystals; solution method; fapbbr3 single; solution; seeded solution

Journal Title: ACS applied materials & interfaces
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.