LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Flexible PVDF-TrFE Nanocomposites with Ag-decorated BCZT Heterostructures for Piezoelectric Nanogenerator Applications.

Photo by alexbemore from unsplash

Flexible piezoelectric nanogenerators are playing an important role in delivering power to next-generation wearable electronic devices due to their high-power density and potential to create self-powered sensors for the Internet… Click to show full abstract

Flexible piezoelectric nanogenerators are playing an important role in delivering power to next-generation wearable electronic devices due to their high-power density and potential to create self-powered sensors for the Internet of Things. Among the range of available piezoelectric materials, poly(vinylidene fluoride-trifluoroethylene) (PVDF-TrFE)-based piezoelectric composites exhibit significant potential for flexible piezoelectric nanogenerator applications. However, the high electric fields that are required for poling cannot be readily applied to polymer composites containing piezoelectric fillers due to the high permittivity contrast between the filler and matrix, which reduces the dielectric strength. In this paper, novel Ag-decorated BCZT heterostructures were synthesized via a photoreduction method, which were introduced at a low level (3 wt %) into the matrix of PVDF-TrFE to fabricate piezoelectric composite films. The effect of Ag nanoparticle loading content on the dielectric, ferroelectric, and piezoelectric properties was investigated in detail, where a maximum piezoelectric energy-harvesting figure of merit of 5.68 × 10-12 m2/N was obtained in a 0.04Ag-BCZT NWs/PVDF-TrFE composite film, where 0.04 represents the concentration of the AgNO3 solution. Modeling showed that an optimum performance was achieved by tailoring the fraction and distribution of the conductive silver nanoparticles to achieve a careful balance between generating electric field concentrations to increase the level of polarization, while not degrading the dielectric strength. This work therefore provides a strategy for the design and manufacture of highly polarized piezoelectric composite films for piezoelectric nanogenerator applications.

Keywords: nanogenerator applications; pvdf; pvdf trfe; piezoelectric nanogenerator

Journal Title: ACS applied materials & interfaces
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.