LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Construction of a Highly Anisotropic Supramolecular Assembly Assisted by a Dimensional Confinement Space: Toward Perovskite Solar Cells.

Photo from wikipedia

Solution-processed polycrystalline perovskites (PVKs) have aroused tremendous interest in the optoelectronic device field. However, the inherent high-density defects in the polycrystalline hindered achieving efficient and stable large-area PVK solar cells… Click to show full abstract

Solution-processed polycrystalline perovskites (PVKs) have aroused tremendous interest in the optoelectronic device field. However, the inherent high-density defects in the polycrystalline hindered achieving efficient and stable large-area PVK solar cells (PSCs). Although organic molecules are already employed to passivate PVK defects, they are insulating by nature, limiting the carrier transport. Here, we design an assembly of a small molecule (N,N'-di(propanoic acid)-perylene-3,4,9,10-tetracarboxylic diamide, PDI) via confinement-assisted supramolecular polymerization technology, which is used as a binder for grain boundaries to simultaneously passivate defects and promote carrier transport. The synergistic effect allows the efficiency of all-air processed carbon-based PSCs to reach a decent power conversion efficiency of 14.17%. Importantly, the as-prepared supramolecular assembly completely breaks through the insulating nature of the single molecule, which exists in the long-term defect passivation of PSCs by organic molecules. It is expected that this finding may provide novel design ideas to apply the assemblies to improve the performance of PSCs.

Keywords: construction highly; solar cells; anisotropic supramolecular; highly anisotropic; confinement; supramolecular assembly

Journal Title: ACS applied materials & interfaces
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.