LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Method to Inhibit Perovskite Solution Aging: Induced by Perovskite Microcrystals.

Photo from wikipedia

The main feature of perovskite solar cells (PSCs) is that the perovskite layer can be fabricated by the solution method, while the long-time stability of the precursor solution is critical.… Click to show full abstract

The main feature of perovskite solar cells (PSCs) is that the perovskite layer can be fabricated by the solution method, while the long-time stability of the precursor solution is critical. During the fabrication of formamidinium (FA)-based PSCs, the introduction of methylammonium cations (MA+) in the precursor solution can accelerate the crystallization process of the perovskite layer, stabilize the perovskite structure, and passivate defects. However, MA+ is easy to deprotonate to generate MA molecules, and it then condensates with formamidinium iodide (FAI) to form adverse byproducts. Herein, perovskite microcrystals (MCs) for preparing perovskite precursor solution were investigated in details, which can improve the long-term stability of the precursor solution and the perovskite film. We found that FA+ in MC solution was confined in the three-dimensional scaffold, preventing it from reacting with MA+. Meanwhile, MCs can effectively promote nucleation to form large grains in perovskite films. The photoelectric conversion efficiency (PCE) of the device with 3 week-aged MC solution remains at 90% and is only reduced by 10% after 160 h of continuous operation, which far exceeds the performance of the PCE of those based on mixed monomer powder (MP) solution. Therefore, perovskite MCs, an effective reactive inhibitor to improve the stability of perovskite precursor solutions, are of great significance for large-scale commercial fabrication.

Keywords: method inhibit; perovskite; perovskite microcrystals; precursor solution; solution

Journal Title: ACS applied materials & interfaces
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.