To perceive the human body's multienvironmental mobility, intelligent flexible electronic equipment with an underwater motion monitoring function has potential research value in the field of intelligent detection. Hydrogels are widely… Click to show full abstract
To perceive the human body's multienvironmental mobility, intelligent flexible electronic equipment with an underwater motion monitoring function has potential research value in the field of intelligent detection. Hydrogels are widely used in the field of flexible electronics for their unique three-dimensional polymer networks. Due to the instinctive hydrophilicity of hydrogels, the swelling of hydrogels underwater and the formation of hydration coating on the surface become the primary obstacles to underwater applications. Herein, a hydrogel sensor that can achieve underwater utilization was prepared through copolymerization between hydrophobic and hydrophilic polymer monomers. The synergistic impact of electrostatic interaction, metal coordination, and hydrogen bonding ensured the hydrogel's remarkable underwater adhesive ability to a variety of substrates. The hydrophobic micelles and self-hydrophobization process induced from ultrasonic dispersion in the polymer matrix gave an outstanding hydrophobic performance (water contact angle of 130.4°) and antiswelling property (swelling ratio of 26% after 72 h of immersion), presenting unprecedented underwater adaptability. The above-mentioned hydrogel could be assembled into a flexible hydrogel sensor with satisfactory sensitivity (gauge factor of 0.44), ultrafast response rate (106 ms), and excellent cyclic stability, demonstrating accurate monitoring of complex human motions in water and air.
               
Click one of the above tabs to view related content.