LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Fabricating a Partially Fluorinated Hybrid Cation-Exchange Membrane for Long Durable Performance of Vanadium Redox Flow Batteries.

Photo from wikipedia

The long-term durability of vanadium redox flow batteries (VRFBs) depends on the stability and performance of the membrane separator. We have architected a hybrid membrane by uniform dispersion of MIL-101(Cr)… Click to show full abstract

The long-term durability of vanadium redox flow batteries (VRFBs) depends on the stability and performance of the membrane separator. We have architected a hybrid membrane by uniform dispersion of MIL-101(Cr) (Cr-MOF) in a partially fluorinated polymer grafted with sulfonic acid groups (PHP@AMPSCr-MOF(1.0)). The single cell VRFB performance of the PHP@AMPSCr-MOF(1.0) membrane was studied in comparison with the Cr-MOF incorporated Nafion membrane (NafionCr-MOF(1.0)) and showed an excellent result with 97.5% Coulombic efficiency (CE) at 150 mA/cm2 without any significant deterioration in the charge-discharge process for 1500 cycles (over 650 h). Meanwhile, the CE value of the NafionCr-MOF membrane (94.5%) deteriorated after 800 cycles (about 360 h) under similar conditions. The high VRFB performance of the PHP@AMPSCr-MOF(1.0) membrane has been attributed to the synergized properties and good interactions between Cr-MOF and partially fluorinated polymer matrix responsible for the creation of hydrophilic proton-conducting channels to achieve high selectivity. Furthermore, the cost-effective polymer and thus membranes may open new windows for practical applications in other energy devices such as fuel cells, electrolysis, and water treatment.

Keywords: redox flow; mof; vanadium redox; membrane; performance; partially fluorinated

Journal Title: ACS applied materials & interfaces
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.