Shellac is a natural amphiphilic substance, and its nanoparticles can be used to stabilize Pickering emulsions with droplets and bi-continuous structures. In this study, shellac nanoparticles (SNPs) were produced through… Click to show full abstract
Shellac is a natural amphiphilic substance, and its nanoparticles can be used to stabilize Pickering emulsions with droplets and bi-continuous structures. In this study, shellac nanoparticles (SNPs) were produced through the anti-solvent method, and these SNPs were used to produce a series of Pickering emulsions. Fourier transform infrared results showed that SNPs were generated through hydrogen bonding and hydrophobic effects. The contact angle of SNPs was 122.3°, indicating that hydrophobicity was their dominant characteristic. According to the results of confocal laser scanning microscopy, the Pickering emulsions stabilized by SNPs showed oil-in-water, bi-continuous structure, and water-in-oil characteristics, which were dependent on the oil-phase content. The resistance value of the emulsified part of these Pickering emulsion systems significantly increased at an oil-phase ratio of 80-90% (more than 105 MΩ), as compared with the 10-70% oil-phase content (around 1 MΩ). The viscosity of SNP-stabilized Pickering emulsions with bi-continuous structures was highest at 40% oil-phase content. The porous material prepared by using Pickering emulsions with bi-continuous structures as a template had an interconnected structure and was able to absorb both water and oil. This study indicated that these amphiphilic SNPs readily form bi-continuous structures and effectively stabilize Pickering emulsions with droplets. These SNPs are expected to have increased application in food and pharmaceutical industries.
               
Click one of the above tabs to view related content.