LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Covalent Organic Frameworks as Efficient Photoinitiators and Cross-Linkers To Fabricate Highly Stretchable Hydrogels.

Photo from wikipedia

In this work, two kinds of imine-type covalent organic framework (COF) nanoparticles are demonstrated as efficient photocatalytic initiators to trigger the free-radical polymerization of acrylamide (AM) to prepare polyacrylamide (PAM)… Click to show full abstract

In this work, two kinds of imine-type covalent organic framework (COF) nanoparticles are demonstrated as efficient photocatalytic initiators to trigger the free-radical polymerization of acrylamide (AM) to prepare polyacrylamide (PAM) hydrogels under visible light irradiation, without any assistance from the co-initiator. Simultaneously, the COF nanoparticles bearing vinyl side groups (COF-V) promote covalent cross-linking of the polymer chains, which significantly reinforces the mechanical properties of the nanocomposite hydrogel. The obtained PAM/COF-V hydrogel is highly stretchable with an extraordinary elongation up to 3300% strain. On the other hand, the COF nanoparticles modified with methoxy moieties (COF-OMe) endow the resulting PAM/COF-OMe hydrogel with a promising fluorescence feature. In addition, this strategy provides a visible-light-regulated photocatalytic polymerization approach with a simplified recipe to fabricate COF-based nanocomposite hydrogels or resins with diverse functions.

Keywords: highly stretchable; frameworks efficient; organic frameworks; covalent organic; cof nanoparticles

Journal Title: ACS applied materials & interfaces
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.