LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Natural Small Biological Molecule Based Supramolecular Bioadhesives with Innate Photothermal Antibacterial Capability for Nonpressing Hemostasis and Effective Wound Healing.

Photo from wikipedia

Bioadhesives with immediate wound closure, efficient hemostasis, and antibacterial properties that can well integrate with tissue are urgently needed in wound management. Natural small biological molecule based bioadhesives hold great… Click to show full abstract

Bioadhesives with immediate wound closure, efficient hemostasis, and antibacterial properties that can well integrate with tissue are urgently needed in wound management. Natural small biological molecule based bioadhesives hold great promise for manipulating wound healing by taking advantage of integrated functionalities, synthetic simplification, and accuracy, cost efficiency and biosafety. Herein, a natural small biological molecule based bioadhesive, composed of natural small biological molecules (α-lipoic acid and tannic acid) and a small amount of ferric chloride, was prepared via an extremely simple and green route for wound management. In this system, covalent and noncovalent interactions between each component resulted in the self-healing supramolecular bioadhesive. It possessed appropriate wet-tissue adhesion, efficient nonpressing hemostasis and free radical scavenging abilities. More importantly, the interaction between tannic acid and Fe3+ endowed the bioadhesive with innate and steady photothermal activity, which showed excellent photothermal bactericidal activity to both E. coli and S. aureus. The bioadhesive promoted wound healing for linear and circular wounds in vivo, especially for infectious wounds under near-infrared (NIR) irradiation. This bioadhesive will have promising value as a safe and effective antimicrobial adhesive for infectious wound management.

Keywords: biological molecule; wound healing; natural small; molecule based; small biological

Journal Title: ACS applied materials & interfaces
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.