LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

The Role of Balancing Carrier Transport in Realizing an Efficient Orange-Red Thermally Activated Delayed-Fluorescence Organic Light-Emitting Diode.

Photo by mymind from unsplash

Simultaneously realizing improved carrier mobility and good photoluminescence (PL) efficiency in red thermally activated delayed-fluorescence (TADF) emitters remains challenging but important. Herein, two isomeric orange-red TADF emitters, oPDM and pPDM,… Click to show full abstract

Simultaneously realizing improved carrier mobility and good photoluminescence (PL) efficiency in red thermally activated delayed-fluorescence (TADF) emitters remains challenging but important. Herein, two isomeric orange-red TADF emitters, oPDM and pPDM, with the same basic donor-acceptor backbone but a pyrimidine (Pm) attachment at different positions are designed and synthesized. The two emitters show similarly good PL properties, including narrow singlet-triplet energy offsets (0.11 and 0.15 eV) and high photoluminescence quantum yields (ca. 100 and 88%) in doped films. An orange-red organic light-emitting diode (OLED) employing oPDM as an emitter achieves an almost twice as high maximum external quantum efficiency (28.2%) compared with that of a pPDM-based OLED. More balanced carrier-transporting properties are responsible for their contrasting device performances, and the position effect of the Pm substituent leads to significantly distinct molecular packing behaviors in the aggregate states and different carrier mobilities.

Keywords: thermally activated; orange red; carrier; activated delayed; red thermally

Journal Title: ACS applied materials & interfaces
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.