LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Tunnel-Structured ζ-V2O5 as a Redox-Active Insertion Host for Hybrid Capacitive Deionization.

Photo by like_that_mike from unsplash

Much of the earth's water has a salt content that is too high for human consumption or agricultural use. Enhanced oil recovery operations generate massive volumes of produced water waste… Click to show full abstract

Much of the earth's water has a salt content that is too high for human consumption or agricultural use. Enhanced oil recovery operations generate massive volumes of produced water waste with a high mineral content that can substantially exacerbate water distress. Current deionization techniques such as reverse osmosis function by removing the water (majority phase) from the salt (minority phase) and are thus exceedingly energy-intensive. Furthermore, these methods are limited in their ability to selectively extract high-value ions from produced water waste and brine streams. Hybrid capacitive deionization holds promise for enabling both desalination and resource recovery. In this work, we demonstrate the construction of a hybrid capacitive deionization cell that makes use of tunnel-structured ζ-V2O5 as a redox-active positive electrode material. By augmenting surface adsorption with Faradaic insertion processes, a 50% improvement in the ion removal capacity for K and Li ions is obtained as compared to a capacitive high-surface-area carbon electrode. The extracted ions are accommodated in surface sites and interstitial sites within the one-dimensional tunnel framework of ζ-V2O5. The kinetics of ion removal depend on the free energy of hydration, which governs the ease of desolvation at the electrode/electrolyte interface. The overall ion removal capacity additionally depends on the solid-state diffusion coefficient. ζ-V2O5 positive electrodes show substantial selectivity for Li+ removal from mixed flow streams and enrichment of the Li-ion concentration from produced water waste derived from the Permian Basin.

Keywords: deionization; hybrid capacitive; tunnel structured; water; capacitive deionization; structured v2o5

Journal Title: ACS applied materials & interfaces
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.