LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Engineering Silk Protein to Modulate Polymorphic Transitions for Green Lithography Resists.

Photo by nci from unsplash

Silk protein is being increasingly introduced as a prospective material for biomedical devices. However, a limited locus to intervene in nature-oriented silk protein makes it challenging to implement on-demand functions… Click to show full abstract

Silk protein is being increasingly introduced as a prospective material for biomedical devices. However, a limited locus to intervene in nature-oriented silk protein makes it challenging to implement on-demand functions to silk. Here, we report how polymorphic transitions are related with molecular structures of artificially synthesized silk protein and design principles to construct a green-lithographic and high-performative protein resist. The repetition number and ratio of two major building blocks in synthesized silk protein are essential to determine the size and content of β-sheet crystallites, and radicals resulting from tyrosine cleavages by the 193 nm laser irradiation induce the β-sheet to α-helix transition. Synthesized silk is designed to exclusively comprise homogeneous building blocks and exhibit high crystallization and tyrosine-richness, thus constituting an excellent basis for developing a high-performance deep-UV photoresist. Additionally, our findings can be conjugated to design an electron-beam resist governed by the different irradiation-protein interaction mechanisms. All synthesis and lithography processes are fully water-based, promising green lithography. Using the engineered silk, a nanopatterned planar color filter showing the reduced angle dependence can be obtained. Our study provides insights into the industrial scale production of silk protein with on-demand functions.

Keywords: polymorphic transitions; silk protein; silk; green lithography

Journal Title: ACS applied materials & interfaces
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.